Biophysical characterization of a designed TMV coat protein mutant, R46G, that elicits a moderate hypersensitivity response in Nicotiana sylvestris.

نویسندگان

  • J M Toedt
  • E H Braswell
  • T M Schuster
  • D A Yphantis
  • Z F Taraporewala
  • J N Culver
چکیده

The hypersensitivity resistance response directed by the N' gene in Nicotiana sylvestris is elicited by the tobacco mosaic virus (TMV) coat protein R46G, but not by the U1 wild-type TMV coat protein. In this study, the structural and hydrodynamic properties of R46G and wild-type coat proteins were compared for variations that may explain N' gene elicitation. Circular dichroism spectroscopy reveals no significant secondary or tertiary structural differences between the elicitor and nonelicitor coat proteins. Analytical ultracentrifugation studies, however, do show different concentration dependencies of the weight average sedimentation coefficients at 4 degrees C. Viral reconstitution kinetics at 20 degrees C were used to determine viral assembly rates and as an initial assay of the rate of 20S formation, the obligate species for viral reconstitution. These kinetic results reveal a decreased lag time for reconstitution performed with R46G that initially lack the 20S aggregate. However, experiments performed with 20S initially present reveal no detectable differences indicating that the mechanism of viral assembly is similar for the two coat protein species. Therefore, an increased rate of 20S formation from R46G subunits may explain the differences in the viral reconstitution lag times. The inferred increase in the rate of 20S formation is verified by direct measurement of the 20S boundary as a function of time at 20 degrees C using velocity sedimentation analysis. These results are consistent with the interpretation that there may be an altered size distribution and/or lifetime of the small coat protein aggregates in elicitors that allows N. sylvestris to recognize the invading virus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris.

Alterations in the structure of the tobacco mosaic virus (TMV) coat protein affect the elicitation of the N' gene hypersensitive response (HR) in Nicotiana sylvestris. To investigate this structure-function relationship, amino acid substitutions with predicted structural effects were created throughout the known structure of the TMV coat protein. Substitutions that resulted in the elicitation o...

متن کامل

Study on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus

Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...

متن کامل

Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement.

Expression of tobacco mosaic virus (TMV) coat protein (CP) in plants confers resistance to infection by TMV and related tobamoviruses. Certain mutants of the CP (CP(T42W)) provide much greater levels of resistance than wild-type (wt) CP. In the present work, infection induced by RNA transcripts of TMV clones that contain wt CP or mutant CP(T42W) fused to the green fluorescent protein (GFP) (TMV...

متن کامل

Expression of alfalfa mosaic virus coat protein in tobacco mosaic virus (TMV) deficient in the production of its native coat protein supports long-distance movement of a chimeric TMV.

Alfalfa mosaic virus (AlMV) coat protein is involved in systemic infection of host plants, and a specific mutation in this gene prevents the virus from moving into the upper uninoculated leaves. The coat protein also is required for different viral functions during early and late infection. To study the role of the coat protein in long-distance movement of AlMV independent of other vital functi...

متن کامل

Transgenic plants expressing potato virus X ORF2 protein (p24) are resistant to tobacco mosaic virus and Ob tobamoviruses.

The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1999